Integration of Process Planning, Scheduling, and Mobile Robot Navigation Based on TRIZ and Multi- Agent Methodology

نویسندگان

  • Milica Petrović
  • Zoran Miljković
  • Bojan Babić
چکیده

This paper presents methodology for development of software application for integration of process planning, scheduling, and the mobile robot navigation in manufacturing environment. Proposed methodology is based on the Russian Theory of Inventive Problem Solving (TRIZ) and multiagent system (MAS). Contradiction matrix and inventive principles are proved as effective TRIZ tool to solve contradictions during conceptual phase of software development. The proposed MAS architecture consists of six intelligent agents: job agent, machine agent, optimization agent, path planning agent, machine learning agent and mobile robot agent. All agents work together to perform process plans optimization, schedule plans optimization, optimal path that mobile robot follows and classification of objects in a manufacturing environment. Experimental results show that developed software can be used for proposed integration in order to improve performance of intelligent manufacturing systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Ant-Q agent System Based Path Optimization Service for a Multi- Objective Mobile Robot and Real World

A multi-objective mobile robot path planning algorithm based on improved Ant-Q agent system algorithm is proposed. The most Driver has Navigation system. It is convenient if him use the Navigation system. But, Navigation systems are not able to determine optimized driving routes considering that each driver has specific driving habits and propensities and many circumstantial changes are present...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

A Multi-Agent Robot Coordination Framework for Goal based Navigation Problem

This paper addresses a vision based solution to collaborative multi-agent system for autonomous mobile robots. Each agent in the swarm is designed based on two different behavioural architectures, allowing them to overcome navigation problem in partly cluttered environment. A simple but efficient communication topology has been applied to the robot agents so as to run them in a swarm methodolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013